A Generalized Method for Automated Multilingual Loanword Detection

Abhijnan Nath, Sina Mahdipour Saravani, Ibrahim Khebour, Sheikh Mannan, Zihui Li, and Nikhil Krishnaswamy

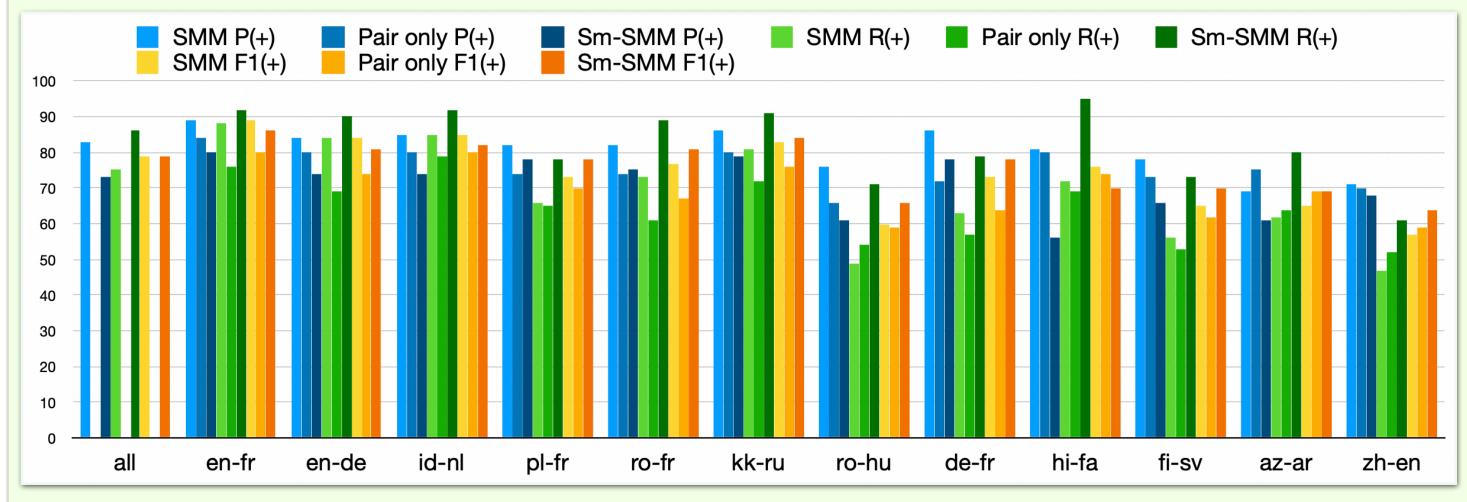
Introduction

- **Loanwords:** words incorporated from one language to another without translation
- If two words sound similar and have similar meanings, this is (usually) too coincidental to have occurred by chance
- We present a method to automatically detect loanwords between arbitrary language pairs
- Account for phonetic, semantic, orthographic, and articulatory features

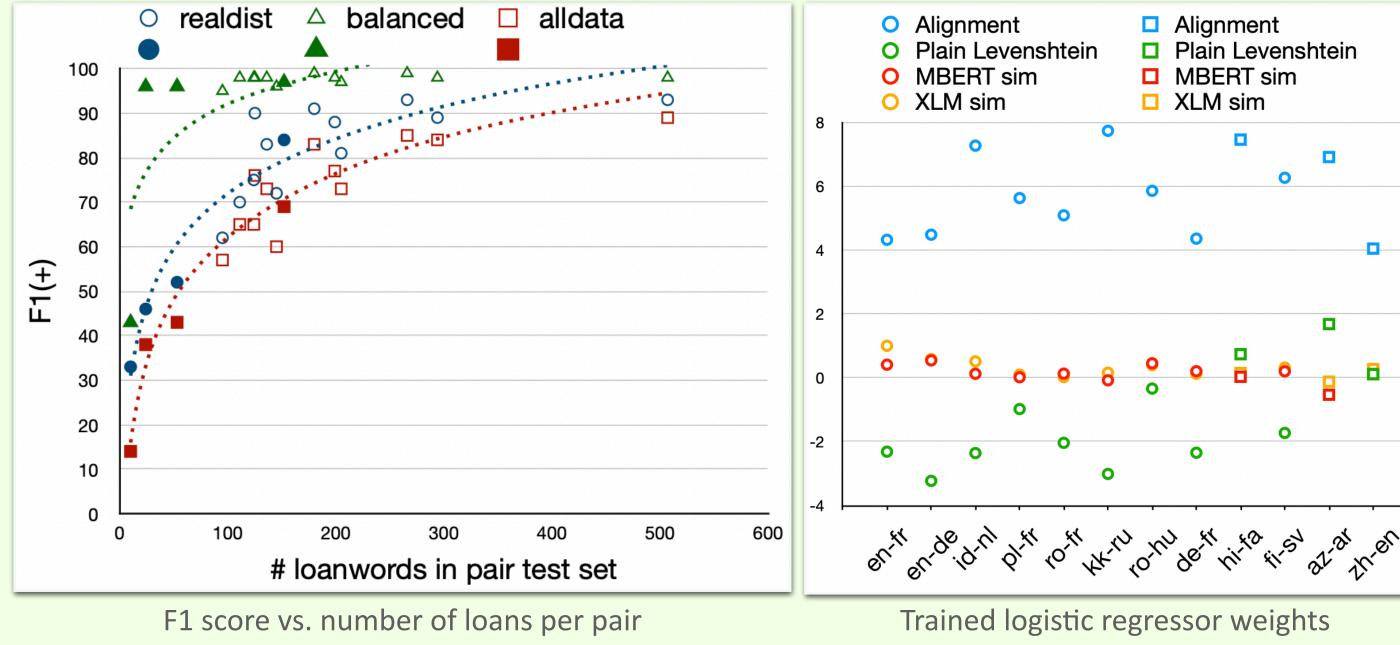
abhijnan.nath@colostate.edu • sina@cs.utah.edu • {ibrahim.khebour,sheikh.mannan,nkrishna}colostate.edu

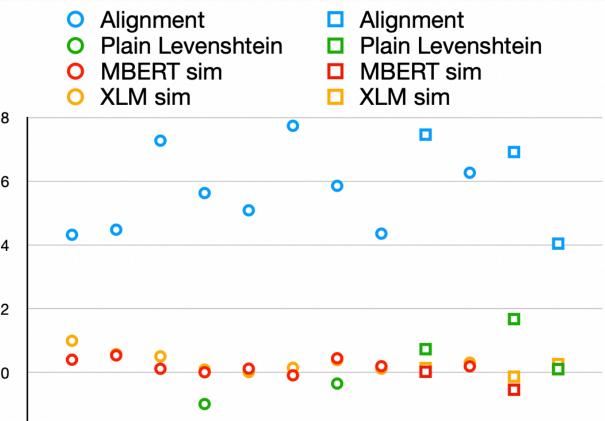
Results						LR	N	N S	VM	RF								
					F	'1 (+)	85	86	5	84	85							
						_	Avg. p	ositive	e F1 (%	6) of 4	1 class	sifiers						
	all	en-fr	en-de	id-nl	pl-fr	ro-fr	kk-ru	ro-hu	de-fr	hi-fa	fi-sv	az-ar	zh-en		fa-ar	hu-de	de-it	ca-a
р	92	96	90	96	90	94	93	88	94	94	85	85	81	Р	95	95	73	100
\mathbf{P}	98	97	98	99	97	96	98	99	98	97	98	98	98	_	97	100	100	75
(+)	83	89	84	85	82	82	86	76	86	81	78	69	71	(+)	75	73	54	25
D	81	91	87	90	73	82	88	61	75	86	68	71	51	ъ	75	36	33	20
\mathbf{R}	98	99	99	99	97	99	100	93	99	99	98	98	93	\mathbf{R}	97	93	92	30
(+)	75	88	84	85	66	73	81	49	63	72	56	62	47	(+)	64	30	29	10
F 1	86	93	89	93	81	88	91	72	83	90	75	70	62	171	84	52	46	33
F1	98	98	98	99	97	98	99	96	98	98	98	98	95	F1	97	96	96	43
(+)	79	89	84	85	73	77	83	60	73	76	65	65	57	(+)	69	43	38	14

2nd row: balanced between loans/non-loans; 3rd row: all available data)


- Evaluate on 12 language pairs, 4 unseen language pairs
- Our method achieves or exceeds SOTA and human performance
- Findings suggest features of loanwords allow generalization

Data


- <u>Wiktionary LoanWord (WikLoW) dataset: 16 language</u> pairs gathered from Wiktionary, with extensible method
- Positive loans augmented with:
- Synonyms (similar meaning, different pronunciation)
- Hard Negatives (different meaning, similar pronunciation)
- Randoms (different meaning, different pronunciation)


Borrower	Donor	# loans
English	French	5074
English	German	2942
Indonesian	Dutch	2665
Polish	French	2055
Romanian	French	2000^{\dagger}
Kazakh*	Russian	1809
Persian	Arabic	1526
Romanian	Hungarian	1460
German	French	1365
Hindi*	Persian	1249
Finnish	Swedish*	1242
Azerbaijani*	Arabic	1116
Mandarin	English	960
Hungarian	German	532
German	Italian	249
Catalan*	Arabic	94

• Four experiments: Single Multilingual Model (SMM), pairspecific models, pruned training set (Small-SMM), unseen language pairs

Neural network results comparing SMM, pair-specific models, and Small-SMM

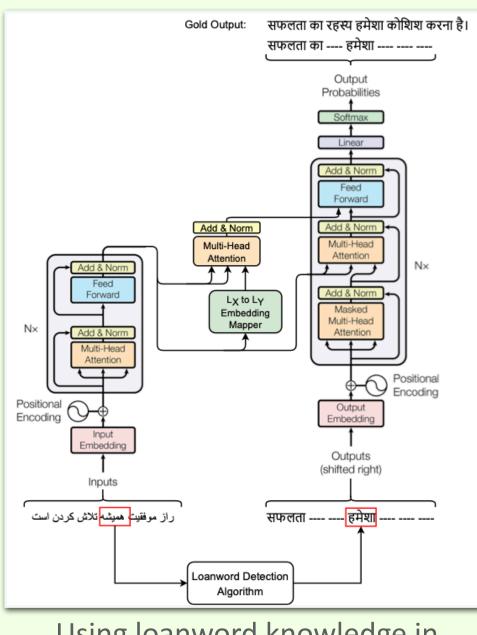
unseen pairs (%)

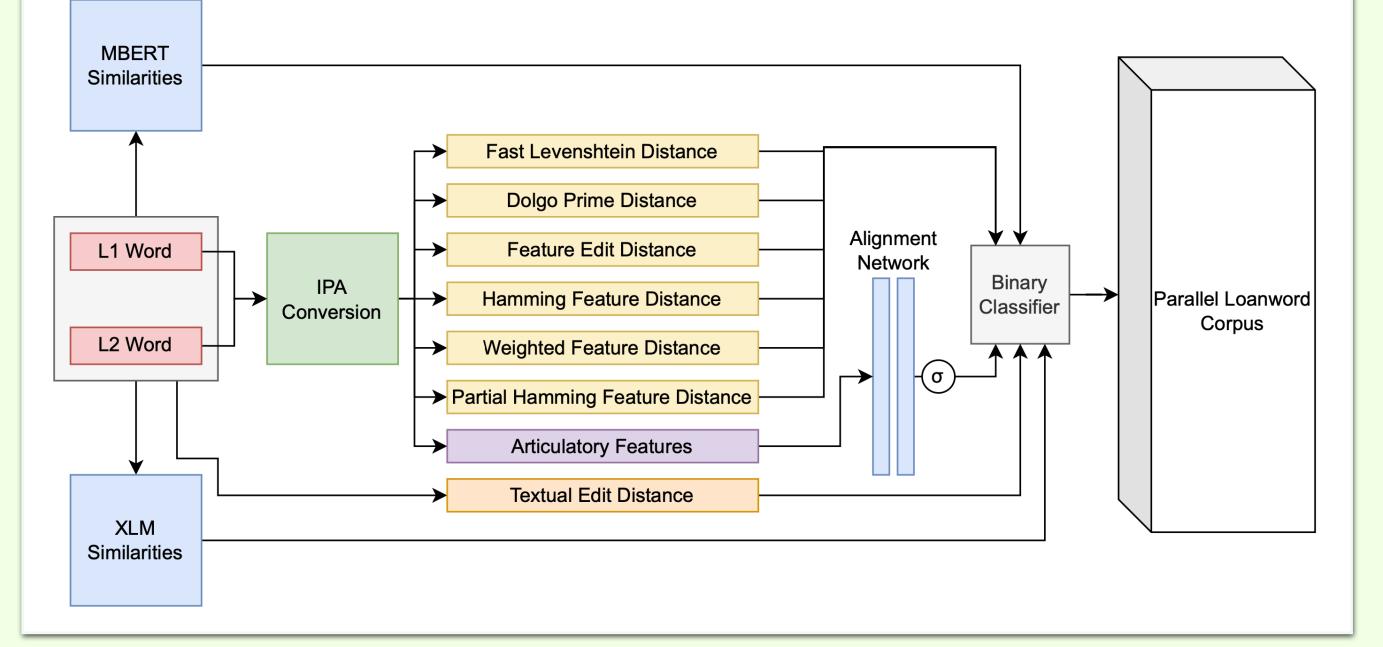
• Converted to IPA using Epitran and articulatory features using PanPhon

Algorithm

- Extract 6 edit distances from PanPhon: *Fast Levenshtein* Distance, Dolgo Prime Distance, Feature Edit Distance, Hamming Feature Distance, Weighted Feature Distance, Partial Hamming Feature Distance
- Extract cosine similarity between word pairs from multilingual language models *MBERT* and *XLM-100*
- Deep neural network to score alignment between articulatory features
- **Binary classification:** Logistic Regressor, Neural Network, Support Vector Machine, Random Forest

- Our method generalizes to unseen language pairs
- Articulatory alignment most useful feature
- Human comparison: fluent speakers selected loans from same test set


Pair	N	Human μ R(+)	SMM R(+)	κ	# loans (homonyms)
en-fr	7	29	88	.059	508 (8)
hi-fa	6	60	72	.113	125 (4)
zh-en	6	85 ⁹	47	.034	95 (1)


Human recall vs. SMM recall

• Model can beat human performance too!

Conclusion and Future Work

- We present an extensible method and novel baseline in loanword detection for arbitrary language pairs
- Automated loanword detection

Loanword detection architecture

enables many downstream tasks

- Loanword knowledge is useful in, e.g., coreference resolution, NER, MT
- Parallel loanword corpora afford learning cross-lingual embedding mappings

Using loanword knowledge in machine translation

Resources

• Codebase: https://github.com/csu-signal/ loan-word-detection