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ABSTRACT
Spatial disorientation is a leading cause of fatal aircraft accidents.
This paper explores the potential of AI agents to aid pilots in main-
taining balance and preventing unrecoverable losses of control
by offering cues and corrective measures that ameliorate spatial
disorientation. A multi-axis rotation system (MARS) was used to
gather data from human subjects self-balancing in a spaceflight
analog condition. We trained models over this data to create “digi-
tal twins” that exemplified performance characteristics of humans
with different proficiency levels. We then trained various reinforce-
ment learning and deep learning models to offer corrective cues
if loss of control is predicted. Digital twins and assistant models
then co-performed a virtual inverted pendulum (VIP) programmed
with identical physics. From these simulations, we picked the 5 best-
performing assistants based on task metrics such as crash frequency
and mean distance from the direction of balance. These were used
in a co-performance study with 20 new human subjects performing
a version of the VIP task with degraded spatial information. We
show that certain AI assistants were able to improve human per-
formance and that reinforcement-learning based assistants were
objectively more effective but rated as less trusted and preferable
by humans.

CCS CONCEPTS
• Human-centered computing → Interaction paradigms; Em-
pirical studies in HCI; • Computing methodologies→ Control
methods; Learning paradigms.
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1 INTRODUCTION
Maintaining spatial awareness and orientation is critical in domains
like piloting, spaceflight, and even driving. Spatial disorientation
has been and continues to be a leading cause of fatal aircraft inci-
dents [7, 15] and occurs when sensory information (e.g. from the
visual, somatosensory, and vestibular systems) is erroneous, which
can lead to unrecoverable crashes, injury, or loss of life [15, 30].

An AI agent in this situation could potentially use numerical
signals to track the pilot and vehicle’s positioning in the relevant
orientational plane(s), detect if there is a risk of losing control [10, 58,
59], and even alert the pilot to make correctivemaneuvers. However,
there is a record, particularly in high-risk domains like aviation,
of either over-trust or under-trust in highly automated systems.
For instance, Sadler et al. [43] demonstrated that pilots’ trust in
the recommendations of an automated system correlated with the
level of transparency (such as justification) in the recommendation.
The shared autonomy literature indicates that even when an agent
knows an optimal strategy, failing to comply with a suboptimal
strategy its human partner insists on may have a negative effect on
trust and lead to disuse of the system [17, 22, 31, 44].

In this paper, we hypothesize that when attempting to balance
themselves under disorienting conditions, humans will be more
receptive to assistance from an AI whose strategy to regain balance
is more human-like, even if that strategy is objectively less optimal
than a less human-like strategy. We establish a novel task of AI
assistance in regaining balance in disorienting situations using a
documented, realistic simulation of vehicle control in a spaceflight
analog condition. In this scenario, subjects are deprived of gravi-
tational cues and use a joystick to self-balance while seated in a
multi-axis rotation system (MARS) programmed to behave like an
inverted pendulum [34, 51, 52]. We took data of human subjects
attempting to keep the MARS balanced and used it to train digi-
tal twins of “pilots” that exemplified performance characteristics
of humans of various proficiency levels. We then trained multi-
ple “assistant” models that, due to different data and techniques,
demonstrate performance strategies that may align with or differ
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drastically from those of humans. The pilot and assistant models
were placed in a co-performance simulation with a virtual inverted
pendulum (VIP) programmed with identical physics to the MARS.
Assistants attempted to help the pilot models keep the VIP balanced
and avert crashes by offering corrective cues when the pilot risked
a destabilizing loss of balance. To test transfer to a different environ-
ment, we ran assistants with digital twins trained over data from
humans performing an instance of the VIP task directly. Finally,
the best-performing assistant models were deployed in a human-
subject study in the VIP environment to demonstrate the feasibility
of AI assistance as a countermeasure in disorienting situations.

Following a discussion of related literature (Sec. 2), in Sec. 3
we describe the MARS and VIP tasks, the human performance
data collected from each, and how performance is evaluated in
these tasks. Sec. 4 describes the training of different reinforcement
learning models using an analogous environment to the MARS/VIP
tasks, and deep learning models using human performance data,
as well as the selection of “digital twin" models of different human
proficiencies. Sec. 5 presents the evaluation methods and results
for two studies: the high-throughput digital twins study wherein
21 candidate assistant models made corrective suggestions to the
different digital twins of human pilots, and a human-subject study
wherein the five best performing assistants from the digital twins
study engaged in co-performance and co-training in the VIP task
with real humans. In Sec. 6 and Sec. 7, we discuss our findings
and their implications for human-agent collaboration and trust
when performing real-time situated tasks, and directions for future
work.1

Our novel contributions are: 1) a novel task of AI assistance
in disoriented self-balancing, a challenging action-learning task
with well-controlled parameters; 2) an assessment of different rein-
forcement learning and deep learning models’ abilities to prevent
destabilizing loss of control in this task using a high-throughput dig-
ital twins setting; 3) a human-agent co-performance study with the
best-performing AI assistants involving human-in-the-loop (HITL)
AI training, to demonstrate transfer to real humans.

2 RELATEDWORK
Spatial disorientation and balance. An inverted pendulum (with

center of mass above the pivot point) is a common model of human
upright balance in the study of postural dynamics [40]. Panic et al.
[34] and Vimal et al. [53] explored the relevance of the MARS bal-
ancing task to the perception of gravitational cues during unstable
vehicle control. Subjects were strapped into a MARS device pro-
grammed with inverted pendulum (IP) dynamics and instructed to
stabilize themselves about the direction of balance (DOB) using a
joystick. Because the risk of spatial disorientation-related accidents
is heightened when visual information is limited [25, 46], subjects
were blindfolded. Typically, humans rely on gravitational cues when
balancing, which are detected by the vestibular and somatosensory
systems as participants tilt away from the gravitational vertical,
however in spaceflight conditions gravitational cues are not reli-
able. To create a disorienting spaceflight analog condition, Panic
et al. [33] and Vimal et al. [51, 52] placed participants in the Hor-
izontal Roll Plane, where they were always perpendicular to the

1Our code and data is available at https://github.com/csu-signal/HITL-VIP.

Figure 1: Joystick deflections predicted by a DDPG (blue) and
an LSTM trained over human data (green) compared to an
actual 30-sec. MARS participant trial sample (participant de-
flections in red and angular position in black). This instance
of the LSTM displays a test RMSE of .013 while the DDPG
gets .803.

gravitational vertical and no longer tilting relative to it. 90% of par-
ticipants reported spatial disorientation and in data 100% exhibited
characteristic positional drifting [52]. Participants showed minimal
learning and frequent “crashes” (reaching pre-programmed ±60◦
boundaries, after which the MARS automatically reset to the DOB).

AI algorithms. Tasks like IP balancing are well-known use cases
in reinforcement learning [2, 5, 13] that serve as demonstration
benchmarks for newer continuous control algorithms like SAC [16]
or DDPG [23]. These have demonstrated proficiency at solving non-
linear control tasks like IP balancing using reward signals extracted
from observation of applied environmental physics. However, due
to the nature of environmental physics input vs. sensorimotor input,
we hypothesize that they learn to perform the task very differently
from humans. Here we explore the application of different RL and
deep learning algorithms to AI assistance in disoriented balancing.2

Embodiment. Seminal literature operationalizes embodiment as
a two-way process between brain and body/environment [47, 50].
Most modern approaches treat embodiment primarily at a surface
level, such as the richness of visual [3, 4, 18, 19] or interoceptive
[1] representation of an agent’s form, or in terms of the physical
form an agent takes, wherein the actions it is capable of are con-
ditioned upon its articulators [11, 36, 37]. We adopt a definition
of embodiment akin to Ziemke’s structural coupling [60], where a
system embodied in an environment takes environmental states as
input, which changes the condition of the system [38]. However,
the types of information a system is exposed to, such as through
different types of sensors, also condition the relations the system
develops between itself and its environment [8], such that exposure
to different types of data (or different ways of measuring the same
underlying environmental state) may mean that different inputs
and modeling strategies cause a model to learn different policies
within the same action space, and thus may learn to perform the
same task equally well through potentially radically different strate-
gies. Therefore we will speak of different “embodiments” of the
task problem space as reflected through these different strategies.

2Although the RL approaches we use are also parameterized by multilayer neural
networks, we use “deep learning” to refer to non-reinforcement learning algorithms,
such as sliding window or sequence modeling approaches.

https://github.com/csu-signal/HITL-VIP
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Fig. 1 shows how thismanifests in theMARS task. “Actual” shows
the deflections of a human subject—the subject balanced the MARS
using small, intermittent deflections that are characteristic of pro-
ficient human performance [55]. Joystick deflections predicted by
a DDPG model are shown in blue and deflections predicted by an
LSTM trained over actual human motions from other MARS trials
are shown in green. The model trained on human data embodies
the problem space similarly to a proficient human, making it a
superior predictor of novel humans’ small, intermittent actions,
while the DDPG predicts long, continuous deflections that are more
indicative of poor human performance, even though a DDPG suc-
cessfully performs the task independently (see also [27]). In this
paper, we assess if and how an AI model’s ability to embody a task
space similarly to a human translates to increased ability to assist a
human in the task or greater human preference for that assistant
compared to others.

Trust. Life-critical situations involving dynamic systems, such
aviation use cases, may require rapid decisions that may have irre-
versible consequences. According to Schneiderman [45]’s human-
centered AI (HCAI) framework, systems deploying high levels of
autonomy would need to be reliable, safe, and trustworthy (RST)
within known parameters. Human users must also not become
over-reliant on automation such that if the system makes a mistake,
the human can still override the AI using situational knowledge
and value judgments. Furthermore, automated systems may prompt
over-reliance in emergency scenarios even after the systems have
demonstrated a lack of reliability [41, 48, 57], or an under-reliance
on a typically robust system after a single failure point [35].

3 MARS AND VIP TASKS
Fig. 2 compares the MARS and VIP paradigms. Both can be con-
figured in challenging but non-disorienting modes, with standard
sensory information; or difficult and disorienting modes, with de-
graded information. In both disorienting conditions, subjects show
the same characteristic drifting and lack of learning when compared
to the coherent conditions.

TheMARS task is described in Sec. 2. In the data we use here
(described below), MARS dynamics were governed by ¥𝜃 = 𝑘𝑃𝑠𝑖𝑛𝜃 ,
where 𝜃 is degrees deviation from the DOB and pendulum constant
𝑘𝑃 = 600◦/s2.

In the virtual inverted pendulum (VIP) paradigm, an analog
to the MARS programmed with the same physics, subjects balance a
visually simulated circular array of dots (random dot kinematogram,
RDK) which rolls in the plane of the display screen. This is visually
rendered for humans and can be directly actuated by an algorithm.
In the disorienting VIP condition (similar to the Horizontal Roll
Plane in the MARS), the RDK is 50% coherent: alternating subsets of
dots displace coherently across consecutive frames while the other
half jump randomly. This eliminates configural displacement cues
relative to the upright DOB while providing low-level retinal mo-
tion cues. Similar performance degradations occur between MARS
upright vs. supine and VIP 100% vs. 50% coherence conditions,
even with practice, exhibited by an increased number of crashes
accompanied by more frequent destabilizing actions (Fig. 2).

Figure 2: Typical performance in the MARS and VIP tasks,
before practice (Trial 1) and after practice (Trial 20). Phase
plots show angular velocity vs. angular displacement from
the DOB. The “standard” conditions provide angular displace-
ment and velocity cues, and subjects improve significantly
between first and last trial, seen as clustering around the ori-
gin (balance point) by Trial 20. The “disorienting” conditions
eliminate sensory signals about displacement from the DOB,
increasing positional drift (shown as phase loop oscillations
around the X-axis) and destabilizing joystick commands that
accelerate away from the DOB in the current direction of
motion, with minimized learning and continued positional
drift in Trial 20. Cyan dots indicate destabilizing deflections,
where position, velocity and joystick deflection all have the
same sign. Red dots denote anticipatory deflections, where
position and joystick deflection have the same sign but veloc-
ity has the opposite sign—usually done to slow the IP down
when velocity is perceived as being too high.

Figure 3: Complementary evolution of discrete destabilizing
and corrective commands as a function of angular deviation
away from the DOB and toward a fall boundary, seen in
MARS (red) and VIP (black) tasks.

The same performance characteristics are exemplified in both
MARS & VIP, as defined by subject matter experts in the neu-
roscience of balance dynamics [55]. In spaceflight, the pilot has
cues about their motion but no orientation to gravity. The VIP
50% coherent reflects this by providing motion cues without cues
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about configural orientation. The VIP & MARS tasks possess sim-
ilar underlying physical models of instability and in both tasks,
the probability of destabilizing commands decreases and corrective
commands increase as the pendulum position crosses the DOB and
moves closer to a fall boundary (Fig. 3). This shows how the VIP
task is demonstrably analogous to the MARS task, as the MARS task
is demonstrably analogous to spaceflight conditions. Importantly,
these distributions of actions come from human task performance
and demonstrate a particular kind of human action policy based on
sensorimotor perception, an example of structural coupling.

3.1 Data Collection
MARS. Wang et al. [58] released MARS human performance

data from 34 healthy adults (18 female, 16 male). Each subject
experienced two experimental sessions on consecutive days, each
consisting of 20 100-sec. trials where they attempted to balance
themselves with minimal oscillations while blindfolded. The data
contains angular positions and velocities, and joystick deflections
sampled at 50 Hz.

VIP. The VIP data consists of 31 healthy adults (22 female, 9 male).
Subjects took part in 12 30-sec. trials in one session in the disori-
enting condition, with the same goal as the MARS task. Angular
pos./vel. and joystick deflections were sampled at 200 Hz.

3.2 Performance Evaluation
An ideal performer in both of these tasks would be one that im-
mediately rotates to the balance point and stays there with little
to no motion. Calculable metrics from the collected data include
number of crashes (excursions beyond ±60◦), proportion of desta-
bilizing deflections (% destab.—see Fig. 2), mean/standard deviation
of angular position 𝜃 , average magnitude of velocity (𝜇 |𝑀𝑎𝑔 |𝑣𝑒𝑙 ),
and root-mean-square (RMS) velocity. Lower metric values usually
mean improvement, e.g., fewer crashes, more time spent near the
DOB, less oscillation, slower motion, smaller deflections, etc.

MARS. Vimal et al. [55] used a BayesianGaussianMixturemethod
and the aforementioned features to cluster subjects into 3 statisti-
cally distinct groups that represent Proficient, Somewhat-Proficient,
and Not-Proficient performance (hereafter Good, Medium and Bad).
We uses these clusters to split the MARS data into training subsets
and to characterize digital twin performance in the task.

VIP. Plotting VIP subjects’ RMS velocity vs. crash frequency re-
vealed a positive linear relationship (𝑟 = .73). Based on the number
of crashes in the 12th trial and crash reduction between Trials 1 and
12 (i.e., final performance and overall improvement), we assigned
participants relative rankings and divided them in tertiles to mir-
ror the Good/Medium/Bad MARS classification. VIP participants
typically exhibited more crashes, destabilizing actions, and RMS ve-
locity compared to MARS participants of the equivalent proficiency.
These factors and differences in sample rate and environment allow
us to test the transfer of AI assistants to novel digital twins.

4 MODEL TRAINING
Our goals in model training were both to train AI models capable of
independently performing an IP balancing task parameterized with
MARS physics and to create digital twins of humans that replicate
different kinds of participant performance in the task. In some cases

these two categories overlapped, leading to a testable hypothesis:
that a model that performs well at the task may also be able to
assist a “pilot” (real or simulated) in performing the task better.

Fig. 4 shows an I/O schematic of all models. At time 𝑡𝑥 , models
take in a window containing the past𝑤𝑖𝑛𝑆𝑖𝑧𝑒 seconds of angular
positions and velocities and predict the joystick deflection made at
time 𝑡𝑥+𝑓 𝑢𝑡𝑢𝑟𝑒 . DL models over human data additionally take in the
past𝑤𝑖𝑛𝑆𝑖𝑧𝑒 joystick deflections made by the subject. If𝑤𝑖𝑛𝑆𝑖𝑧𝑒 =
0.0, the input consists of the values at 𝑡𝑥 only. If 𝑓 𝑢𝑡𝑢𝑟𝑒 = 0.0, the
next joystick deflection is predicted.

4.1 Reinforcement Learning Models
We trained reinforcement learning-based models that learn directly
from exposure to environmental physics using a custom variation
of Gymnasium’s classic-control Pendulum environment [49]. This
included 1) a problem space bounded at ±60◦ from the DOB, like
the MARS/VIP task; 2) a random starting point for the inverted
pendulum within the newly defined problem space; 3) a custom
reward function3 given by Eq. 1, to encourage small continuous
adjustments like those of Good MARS participants [52, 55].

𝑟 =

{
0, if − 30◦ ≤ 𝜃 ≤ 30◦

−(𝜃2 + .1𝜔2 + .01𝑑2), if 𝜃 < 30◦ ∪ 𝜃 > 30◦
(1)

The RL algorithmswere directly exposed to environmental physics,
unlike the DL models which received only implicit physics through
the human performance data. The default SAC and DDPG imple-
mentations routinely converged to an optimal strategy that mani-
fests as rotating immediately to the DOB and holding position there.
We also trained and evaluated behavior cloning (BC) [42] and ad-
versarial inverse RL (AIRL) [14] using Good MARS participant data,
to teach the models strategies closer to what humans would exe-
cute, in terms of replicating behavior or uncovering implicit reward
functions in the data.

RL models take the current angular position and velocity to pre-
dict the next joystick deflection (𝑤𝑖𝑛𝑆𝑖𝑧𝑒 = 0.0, 𝑓 𝑢𝑡𝑢𝑟𝑒 = 0.0, cf.
Fig. 4). We used Stable-Baselines3’s SAC and DDPG implementa-
tions [39], and trained them with the default MLP policy, BC, or
AIRL. Gaussian distributed noise was added to the action space to
encourage exploration as the IP is considered an under-actuated
task [21]. We trained 5 RL models: 1) SAC & DDPG each with the
standard policy; 2) SAC & DDPG each trained using BC; 3) AIRL
implemented with a SAC-based generator model.

4.2 Deep Learning Models
To replicate human-like real-time performance of the MARS task,
we trained Multilayer Perceptron (MLP), Vanilla Recurrent (RNN),
Long-Short Term Memory (LSTM) [20], and Gated Recurrent Unit
(GRU) [9] network architectures over actions made by humans in
the actual MARS data. Architectures were trained using different
window sizes (0.0𝑠 , just the current timestep—MLPmodels only; and
0.2𝑠 , 0.3𝑠 , and 0.5𝑠). Training data was also split into Good, Medium,
and Bad proficiencies and individual models were trained on data of
a specific proficiency. An additional set of models was trained using
a combination of 1) Good & Medium and 2) Good, Medium & Bad
proficiency data, to see if models could learn strategies employed by
3Where 𝜃 is the angular position, 𝜔 is the angular velocity, and 𝑑 is the joystick
deflection.
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Pilot/Assistant

Input: data from
sliding windows

tx
tx-winSize tx+future

Output: joystick deflection
at time tx+future

Time

Figure 4: Model input and output structure. “Pilot/Assistant”
stands in for any one of the trained prediction models.

certain proficiency groups in scenarios that were not experienced by
the others. In total, we trained 40 individual DL models, all of which,
even when they successfully avoid crashes in solo task performance,
demonstrate suboptimal strategies with human-like oscillation and
intermittent deflections. These behavioral differences show the
differences in how the RL and DLmodels learn to situate themselves
in (or “embody”) the problem space.

4.2.1 Selecting Representative Pilots. As the same performance
characteristics are exemplified in both MARS & VIP, we identified
models that most closely approximate performance categories from
Vimal et al. [55], reflected in Table 1.

All DL models were made to perform the VIP task (3× 30𝑠 trials),
with angular position, velocity, and joystick deflection recorded at
each timestep. We extracted performance features shown in Table 1.
Since the data distribution could not be assumed to be spherical,
these features were used in 𝑘-means clustering (𝑘 = 3) to approxi-
mate the split into Good, Medium, or Bad groups. Following Vimal
et al. [52], the cluster of models that displayed higher oscillations
and greater average magnitude of deflections was considered Bad
while the cluster that displayed smaller, more intermittent actions
was considered Good (with the remainder considered Medium). We
then took the models in each cluster that were trained over the
equivalent data subset (e.g., models in the Good cluster trained over
Good data, m.m.), and used the VIP performance characterization
technique from Sec. 3.2 to identify which model best exemplified
the characteristics of each proficiency group: Good—LSTM trained
over Good data with a window size of 0.2s;Medium—GRU trained
over Medium data with a window size of 0.3s predicting 0.1s into
the future; Bad—MLP trained over Bad data with a window size of
0.5s. That each exemplar used a different architecture also suggests
that the human subjects exhibited different strategies in performing
the MARS task, to different effects.

Models trained over MARS data were found to also exemplify
characteristics of different proficiencies when compared to partici-
pants in the VIP task, suggesting a level of generalizability between
the two different environments. The selected architectures were
then retrained using data from 3 VIP participants of each profi-
ciency group to produce digital twins of VIP pilots. Table 1 shows
the performance characteristics of each pilot exemplar model. All

other models that were trained over GoodMARS data were reserved
to act as candidate assistants, for a total of 21.4

5 EVALUATION
We perform two evaluations: 1) A high-throughput evaluation of
pilot digital twins in co-performance of the VIP task with candidate
assistants; 2) A human subject study of human co-performance of
the VIP task with the best-performing assistants from the digital
twin study.

The 4 major components of the evaluation pipeline include:
1) VIP 2) Crash predictor; 3) Assistant; 4) Pilot. The VIP component
is PyVIP, a Python implementation for easy integration of ML mod-
els. The Crash predictor is a trained instance of the best crash
prediction architecture reported in Wang et al. [58]: a stacked GRU
trained over inputs like those in Sec. 4 that predicts the likelihood
of a crash occurring. Due to the crash predictor’s high false positive
rate, we added a crash probability threshold of 0.8 where only highly
imminent danger would permit assistant suggestions.5 The assis-
tant would provide suggestions when either 1) crash probability
is greater than the threshold and angular distance from the DOB
exceeds 12◦, or 2) angular distance from the DOB exceeds 15◦. The
Assistant observes task performance and makes suggestions when
certain conditions are met. The Pilot may be a digital twin or an
actual human that controls the VIP. We used 6 digital twins—each of
the architectures mentioned in Sec. 4.2.1, trained over both MARS
and VIP data. Humans control the VIP with a joystick.

5.1 Digital Twins Study
In these experiments, the pilot has an 80% probability of accepting
and executing an assistant suggestion instead of its own next action.
If accepted, the pilot makes suggested deflections with a noise of
U(−.05, .05) added to simulate human imprecision, after a .4 +
U(−.05, .05)𝑠 delay to simulate reaction time.6

We ran each evaluation for 3 30-sec. trials. Data was sampled
at 200 Hz with each sample comprising of the angular position
and velocity of the VIP, joystick deflection, crash probability, pilot
and assistant’s joystick deflections, which entity’s deflection was
performed, and whether the deflection made was destabilizing. 468
individual digital twin trials were collected, or 3.9 hours of data.

5.1.1 Results. Table 2 shows performance differences between
the digital twins when unaided and when aided by different assis-
tants. Following the performance evaluation from Sec. 3.2 (where
lower metric values signal improvement), SAC-AIRL is the overall
strongest assistant for digital twins, decreasing crashes, % desta-
bilizing deflections, and RMS velocity to a statistically significant
level (all 𝑝 < 0.0001 according to a paired two-tailed 𝑡-test).

RL models are generally better assistants than DL models over
human data. Interestingly, MLP-GMB-0 (MLP trained over all profi-
ciencies with no window) decreased crashes as much as SAC-AIRL,

4The selected Good pilot architecture was retrained with different weight initialization
to create a distinct instance of the model to act as an assistant.
5We follow Wang et al. [58]’s hypothesis that too many false positives could cause a
human pilot to lose trust in the assistant, but also need to not admit too many false
negatives. 80% represents a balance in these constraints.
6There is no prior work establishing the probability of human subjects following AI
advice in this task, but work on other tasks report ∼80% correctness of/willingness to
rely on AI advice [12, 24, 56]. A 0.4𝑠 reaction time is fast for an average human [29],
but well slower than a trained pilot [6].
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Pilot Crashes↓ % destab.↓ 𝜇 |𝜃 | (◦)↓ 𝜎 (𝜃 ) (◦)↓ 𝜇 |𝑀𝑎𝑔 |𝑣𝑒𝑙 (◦/s)↓ 𝑣𝑒𝑙 RMS↓
Good 7 / 17 15.9 / 54.0 16.6 / 20.3 21.5 / 23.7 53.3 / 53.0 70.6 / 77.7
Med. 9 / 40 21.4 / 63.3 20.1 / 28.8 18.9 / 29.7 68.3 / 122.7 93.9 / 152.3
Bad 27 / 23 36.7 / 52.8 21.4 / 19.4 25.9 / 14.3 114.1 / 57.4 135.9 / 92.2

Table 1: Performance statistics of pilot exemplar models (values are averaged over 3×30 sec. trials except # crashes, which is
summed). Slashes separate models trained over MARS and VIP data. Columns from L–R: # crashes, % destabilizing actions,
mean and SD distance from DOB, mean and SD angular velocity magnitude, and RMS velocity. Lower values are better (Sec. 3.2).

Assistant Crashes↓ % destab.↓ 𝜇 |𝜃 | (◦)↓ 𝜎 (𝜃 ) (◦)↓ 𝜇 |𝑀𝑎𝑔 |𝑣𝑒𝑙 (◦/s)↓ 𝑣𝑒𝑙 RMS↓

SAC 0 / -5 / -25
-8 / -25 / -12

2.2 / 4.9 / -18.3
-31.8 / -38.3 / -28.5

0.4 / 1.2 / -3.6
-2.0 / -7.6 -1.0

-0.9 / -6.6 / -7.9
-1.9 / -6.7 / 7.9

18.0 / -25.3 / -56.9
27.0 / -37.7 / 7.5

18.7 / -38.7 / -67.5
24.4 / -42.2 / -6.9

SAC-AIRL -2 / -7 / -17
-15 / -33 / -12

1.9 / -3.8 / -14.4
-36.8 / -41.5 / -28.5

1.9 / -0.1 / 5.4
-0.5 / -6.1 / 0.9

0.9 / -7.7 / -0.3
-6.8 / -10.9 / 9.1

-9.8 / -38.7 / -62.8
-22.5 / -66.6 / -8.7

-11.2 / -53.5 / -71.2
-29.9 / -72.9 / -20.3

DDPG 1 / -2 / -21
-11 / -23 / -12

2.3 / 3.7 / -17.3
-36.4 / -36.4 / -25.1

2.4 / -2.4 / -2.2
2.6 / -7.5 / -1.0

2.1 / -3.1 / -3.4
3.5 / -3.6 / 9.2

25.3 / -11.0 / -43.1
47.4 / -34.1 / 5.5

24.6 / -21.2 / -51.0
43.5 / -38.6 / -12.5

MLP-GMB-0 -2 / 4 / -11
-1 / -18 / -4

-0.5 / 7.0 / -8.8
-21.6 / -29.7 / -21.5

2.4 / 3.1 / 2.2
2.1 / -6.8 / 4.0

2.2 / 2.8 / -1.7
0.8 / -2.5 / 12.6

18.8 / 7.0 / -43.2
31.4 / -15.5 / 12.2

24.5 / 1.3 / -48.0
38.7 / -18.6 / 3.8

LSTM-G-0.2 3 / 14 / -7
4 / -13 / 1

8.0 / 23.5 / -1.6
-11.0 / -20.5 / -8.8

3.6 / -0.2 / 0.9
1.7 / -7.3 / 3.2

2.8 / 0.6 / 1.5
2.7 / -4.0 / 12.6

25.4 / 15.6 / -33.7
32.9 / -13.2 / 27.4

34.6 / 15.2 / -33.2
41.5 / -14.2 / 24.8

Table 2: Differences in performance with and without assistance (e.g., 0means no change in that metric, lower values are better—
Sec. 3.2) In each cell, top line refers to MARS pilot models and bottom to VIP pilot models. Slashes separate Good/Medium/Bad
pilot models. Under Assistant, G/M/B denotes the proficiency of the assistant training data, decimals denote window size.
Assistants shown achieved a significant reduction in at least one metric value. See appendix for results for all 26 assistants.

but for the Good MARS digital twin only. The Medium exemplar ar-
chitecture performs significantly worse when trained over VIP data
than over MARS data, and the Bad VIP pilot performs much more
like the Medium MARS pilot, while Good pilot models are roughly
consistent with each other across tasks, suggesting that many strate-
gies lead to poor task performance and relatively few do well. This
also speaks to SAC-AIRL’s ability to reduce crashes in both tasks for
all proficiency levels. Other high-performing models also reduce
crashes (DDPG: 𝑝 = 0.0002, MLP-GMB-0: 𝑝 = 0.0033) and destabi-
lizing deflections (DDPG: 𝑝 = 0.0006, MLP-GMB-0: 𝑝 = 0.0080) for
digital twins trained over both MARS and VIP data, demonstrating
transfer between digital twins trained over the different task data.

5.2 Human Subject Study
Results from the high-throughput digital twins setting indicated
that the 5 assistant models shown in Table 2 had a statistically
significant effect on one or more metrics in co-performance with
digital twins trained over both MARS and VIP data. These models—
3 RL-based models and 2 models trained over human data—were
included as candidate assistants in the human subject study. This
gave us a robust but tractable sample of assistants to assess in
co-performance of the VIP task with real human subjects.

We recruited 20 healthy adult subjects (6 female, 13 male, 1
non-binary). Each subject participated in 2 experimental sessions
separated by approximately one week. In Session 1, subjects 1) at-
tempted to balance a 50% coherent PyVIP RDK (3 × 30𝑠 trials);
2) controlled the RDK with assistance from an AI model, rendered
as left/right arrows indicating the direction of suggested deflection
(3 × 30𝑠); 3) watched the same AI control the RDK while providing

directional suggestions via the joystick (3 × 30𝑠). Participants were
randomly assigned one of the candidate assistant models during
Session 1—subjects were grouped into fours and each group re-
ceived assistance from a single type of architecture. Subjects were
not told which type of model they were receiving assistance from.

Between sessions, each assistantmodel was fine-tuned using data
from Task 3 in Session 1. Episodes (consisting of input window and
predicted action) where the direction of agent-predicted deflection
conflicted with the direction of human deflection were stored. These
human-in-the-loop (HITL) disagreement samples were used to fine-
tune the model: the actor networks of the SAC and DDPG were
fine-tuned using behavior cloning over the new data, the SAC-AIRL
model was updated using AIRL over the new data, and the deep
learning models underwent standard fine-tuning.

In Session 2, subjects 1) undertook Task 1 as in Session 1 (solo
RDK balancing—3 × 30𝑠); 2) undertook AI-assisted balancing as
in Session 1 Task 2 but with a different assistant model (3 × 30𝑠);
3) undertook AI-assisted balancing with the version of their Session
2 Task 2 assistant fine-tuned with data from Session 1 subjects who
interactedwith thatmodel type (3×30𝑠). In Session 2 Task 2, subjects
were assigned a non-fine-tuned model of a different architecture
and in Session 2 Task 3 they were given an instance of that same
model fine-tuned with HITL data from Session 1. Participants were
not informed that the Session 2 Task 3 model was fine-tuned on
Session 1 human data.

Finally, subjects took a survey, based on Muir [28], about their
solo performance, how AI assistance changed their performance,
and the level of trust they had in the assistant from each task.
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Figure 5: Absolute differences between baseline human performance metrics compared to AI-assistance in (a) Session 1 Task 2,
(b) Session 2 Task 2 (different assistant model), and (c) Session 2 Task 3 (fine-tuned Session 2 Task 2 assistant).

5.2.1 Results. We first assessed whether subjects displayed any
adaptation to the balancing taskwithin or across sessions that might
confound apparent performance improvements due to AI assistance.
Following Vimal et al. [51], in which participants in the disorienting
MARS task showed minimal learning across consecutive days, we
take performance in Session 1 Task 1 vs. Session 2 Task 1 (which
were separated by approximately 1 week) as a baseline “no learning”
condition in which participants lost familiarity with the task. We
then compare performance differences between Session 1 Task 1
vs. Session 2 Task 1 and between Session 2 Task 1 vs. Session 2
Task 2. If the performance differences between Session 2 Task 1
and Session 2 Task 2 are similarly non-significant compared to
the performance differences between Session 1 Task 1 and Session
2 Task 1, this indicates that no significant adaptation to the task
occurred between tasks within Session 2, and likewise is unlikely
to have occurred between Session 2 Task 2 and Session 2 Task 3;
therefore apparent differences in Session 2 Task 2 and Session 2
Task 3 performance are likely to attributable to the nature of the
AI assistance received.

We computed a score for each participant in each task of interest,
given by Eq. 2,

𝑠 =
( 60 − 𝜇 |𝜃 |

60
)
+ (1− 𝐶

90
) + (1− 𝑝𝐷

100
) + 𝑝𝐴

100
+ ( 𝑅

max𝑅
− 𝐶

max𝐶
), (2)

where 𝐶 is the count of crashes over the task (3 × 30𝑠 trials), 𝑝𝐷
is the percentage of deflections that were destabilizing, 𝑝𝐴 is the
percentage of deflections that were anticipatory (see Fig. 2), 𝑅 is the
task-level count of recoveries from beyond 20◦ away from the DOB
to within 20◦ of the DOB, and max𝑅 and max𝐶 are the maximum
number of recoveries and crashes in the data, respectively.

Because these scores are not normally distributed, we ran a
Wilcoxon Signed-Rank test between Session 1 Task 1 and Session 2
Task 1 scores, and between Session 2 Task 1 and Session 2 Task 2
scores. No statistically significant differences were found between
either pairing, with similar 𝑝-values (.2627 between Session 1 Task
1 and Session 2 Task 1, and .3681 between Session 2 Task 1 and
Session 2 Task 2). This indicates that there was no adaptation to
the task significant enough to confound performance differences
attributable to AI assistance.

Fig. 5 shows the absolute difference in performance metrics
between human solo VIP performance and 3 versions of AI-assisted
performance for each model type: using the original model weights

SAC SAC-AIRL DDPG MLP LSTM

𝜇 69.17 58.83 132.17 28.33 28.41
𝜎 50.47 74.55 164.25 22.27 12.87

Table 3: Mean & SD of number of disagreement episodes
logged during HITL study, by assistant model type.

in Session 1 (5a), the non-fine-tuned assistant from Session 2 (5b),
and the Session 2 assistant fine-tuned on data from humans in
Session 1 who interacted with the assistant of the same architecture
(5c). We see that although, like in the digital twin studies, the RL
assistants in Session 1 were better at reducing the absolute number
of crashes than DL assistants, this distinction often vanished or
reversed after the assistant models were fine-tuned on participant
data and then re-evaluated in Session 2. In Session 2 Task 3, the
DL models fine-tuned on Session 1 data were often now better on
average at reducing metrics associated with velocity and oscillation
such as RMS velocity, velocity magnitude, and standard deviation
of position. This effect is absent in Session 2 Task 2, where subjects
were assisted by a different type of model.

6 DISCUSSION
Like in the digital twins study, the SAC-AIRL assistant often helped
the human subjects reduce crashes and oscillations. This is more
pronounced in versions fine-tuned on HITL data, suggesting that
models with a more human-like strategy contribute to this effect.

Assistance from the DDPG shows a strong tendency to increase
RMS velocity and velocity magnitude values, and this is actually
more so after HITL fine-tuning. This discrepancy is reflected in
the number of disagreement episodes logged for each model type
(Table 3). Human subjects registered a much higher mean num-
ber of disagreements with the DDPG model—and RL models more
generally—than with the DL models. This further indicates that the
DDPG and RL models behave in ways that may contradict human
intuition and/or physical instinct. Through their data and training,
DL models are embodying the problem space and performing the
task in a more human-like way, including transitioning from desta-
bilizing to corrective and anticipatory deflections at distances from
the DOB that align with human behaviors (cf. Fig. 3).

Due to different human reaction times, it is not possible to know
exactly when human subjects followed assistant suggestions, but we
can calculate a heuristic estimate based on instances where a subject
deflects in the direction suggested by the AI within a threshold of
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Perceived Performance Impact

Assistant Task 2 Task 3

+ ∼ − + ∼ −
Overall 50 15 35 55 30 15
SAC 25 25 50 50 25 25
SAC-AIRL 50 0 50 50 25 25
DDPG 75 0 25 50 25 25
MLP-GMB-0 75 25 0 75 25 0
LSTM-G-0.2 25 25 50 50 50 0

(a)+: improved (incl. slightly/significantly),∼: no change, −: decreased
(incl. slightly/significantly).

Reported Trust

Assistant Task 2 Task 3

+ ∼ − + ∼ −
Overall 25 35 40 30 45 25
SAC 25 0 75 25 50 25
SAC-AIRL 0 50 50 25 50 25
DDPG 0 75 25 25 25 50
MLP-GMB-0 50 25 25 25 50 25
LSTM-G-0.2 50 25 25 50 50 0

(b) +: high to complete, ∼: moderate, −: low to none.

Table 4: Perceived performance impact of (4a), and reported level of trust in (4b) Session 2 Task 2 and Task 3 assistants (as %).

the AI making a suggestion. Using a threshold of 450𝑚𝑠 , subjects
followed AI suggestions approximately 44% of the time (𝜎 = 14%).
This is significantly lower than the ∼80% that can be seen in other
domains (Sec. 5.1), suggesting particularities of the task need to be
accounted for. The DDPG was the most followed assistant type at
53%, followed closely by SAC-AIRL (51%). The MLP was the least
followed (32%). Interestingly, fine-tuned assistants were followed
7% less than non-fine-tuned assistants (4% less when comparing
Session 2 Task 3 to only Session 2 Task 2), even though subjects
rated these assistants as more trusted and preferable (see below).

Trust survey. Participants were asked to assess how the AI’s
suggestions changed their performance, and to rate their trust in
the AI. We report survey results after Session 2, where participants
also expressed their preference for one of the two assistant models
used: an assistant with no specific fine-tuning (Task 2 assistant), or
one fine-tuned using Session 1 human data (Task 3 assistant).

Table 4a shows subjects’ perception of their assistant’s impact
on their performance, overall and broken down by assistant type.
Table 4b similarly shows the reported level of trust in each assis-
tant. We see an overall trend toward better perceived impact on
performance and more reported trust in the fine-tuned model when
compared to the original, although interestingly some models to
which participants ascribed a positive effect on performance (e.g.,
the MLP), were rated as less trusted after fine-tuning. At the as-
sistant type level, these numbers should be taken in the context
of small sample sizes (𝑁 = 4). When asked to pick a preference
between the Task 2 and Task 3 assistants, 15% chose Task 2 and
70% chose Task 3 (15% no preference).

7 CONCLUSION AND FUTUREWORK
In this paper, we established a novel task of AI assistance in help-
ing humans maintain balance in a disorienting condition. We first
explored the space of possible AI assistance models using a high-
throughput digital twins setting. The top performing models from
this experiment were then used in a human-subject study to as-
sess both performance impact and participants’ attitudes toward
different assistants.

Given certain data and training methods, AIs that were capable
of performing IP balancing alone were also able to assist real hu-
mans in reducing crashes and oscillation. SAC-AIRL, which learns
rewards implicit in human performance data, appeared to be an
effective disorientation countermeasure in both the digital twins

and human subject studies, by apparently embodying the problem
space in a way that incorporates both physics and human signals.
Although RL models on average make better assistants than DL
models trained over human data, they do so by suggesting actions
that often diverge significantly from the apparent model of the task
captured in human actions. In the human subject studies: human
subjects empirically perceived the RL models as performing the task
incorrectly, and models that learned and embodied a human-like
strategy through pretraining over human data, then were fine-
tuned over more human data in the subject study, were able to
significantly reduce factors related to oscillation and velocity.

Palmer et al. [32] illustrate trust dimensions in the use of au-
tonomous or automated systems, such as robustness (handling per-
turbations/deviations appropriately), benevolence (supporting mis-
sion and operator), and dynamism (negotiating changes in environ-
ment). While our assistants’ suggested actions may be appropriately
corrective (benevolent), respond to pilot-induced perturbations
such as ignoring cues (robust), and transfer between the MARS and
VIP tasks (dynamic), they need to also be understandable in terms
of the pilot’s internal model of the situation to avoid corrections
directly opposed to what the pilot expects (cf. the DDPG vs. MLP
and LSTM in Fig. 5c). Our findings indicate that humans are in fact
more receptive to assistance from an AI that demonstrates a more
human-like, even if objectively suboptimal, balancing strategy.

Future study may investigate fine-tuning on data from a specific
participant rather than an aggregate sample, to uncover person-
specific patterns in task performance, or an investigation of model-
ing techniques that can account for the fact that human behavior is
likely to change over time to account for assistance received from
an AI agent, including one which is trained in real-time using live
human feedback. Subsequent research may also involve transfer
to more complicated conditions, like orientation in multiple roll
planes or flight simulators, as well as investigating the transfer of
AI assistance in the high-throughput VIP to the physical MARS.

There also remains the question of how to deliver an AI as-
sistant’s cues to a human pilot. In this work we rendered visual
indicators on the screen, but other modalities may include aurally
rendered tones or vibrotactile cues (as in [54]) to indicate the direc-
tion and magnitude of the corrective action, or linguistic instruc-
tions. In a previous experiment Mannan and Krishnaswamy [26]
presented evidence toward the utility of language understanding in
task performance, and a multi-variable examination of intervention
method and timing is another avenue of future study.
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